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! ABSTRACT

From the viewpoint of minimum-detectable-signal or radar-maximmum-
range theory, the number of pulses received from a target during one scan
of the radar antenna is an important quantity. This has usually been
arbitrarily taken to be the number occurring between half-power points of
the beam. A mathematical analysis of the "integration" effect for the
train of pulses of varying amplitude received when the antenna beam shape
is Gaussian shows that on*imum results are obtained when the integration
is performed over an angls equal to about 0.8} times the half-power (one-way)
beamwidth. The signal-to-noise ratio obtained by this integration is
equivalent to that of a rectangular-shaped beam of 0.47 times the half-power
width of a Gaussian-shaped beam. Thus the number of pulses received is
0.47 times the number usually assumed. This corresponds to a reduction
in calculated system sensitivity of about 1.6 db.

.mo'Bm STATUS

The work described in this report is an independent part of
a larger, more general problem. The parent problem is a continuing
one on which additional woark will be done as new ideas or specific re-
quirements arise. s
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THE EFFECTIVE NUMBER OF PUISES PER EEAMWIDTH
FOR A SCANNING RADAR

INTRODUCTION

When a scanning radar of beamwidth 8 , angular scanning speed w,
and pulse repetition frequency F scans past a point target, it is
customary to assume that a train of n pulses is received fram the
target, and that n z8F/w . This assumption is based on idealization
of the antenna beam pattern -~ that is, it is assumed that the beam
has uniform gain over an angle & , and zero gain elsewhere. In the
real case, the gain is variable and a reasonable representation of
the variation is the Gaussian or "error® function. The beamwidth
is defined as the width of this function between half-power points, or
0.707 voltage points. (If the power pattern is assumed to be Gaussian,
then the voltage pattern is also of Gaussian form, the only change
being in the coefficient of the exponent.)

The assumed "number of pulses® figures in the calculation of

system sensitivity and range of detection -- specifically, it affects

the calculation of the minimum detectable signal level, because of the
effect of integration.l Briefly this means that the "received signal®
consists of the net effect of the train of pulses. The nét effect is
analyzed in terms of the signal-to-noise ratio for the n integrated pulses
as compared with observation of a single pulse. In general the resultant
signal-to-noise ratio increases with number of uniform-amplitude pulses
integrated (though not necessarily linearly). It is important to know
what number of pulses to use in computing the effective signal-to-noise
ratio for the train of pulses received as an antenna scans past a target.

The procedure of taking the number between half-power points of the
beamwidth is obviously an arbitrary one. Pulses of reduced amplitude are
received far out from the beam center, the amplitude varying with angls,
0, acgording to some function which is here assumed to be of the fom
e~%¥9" ., The two questions to be answered are: (1) how many of these
pulses are actually integrated -- i.e., how far out on the edges of the
beam do the pulses actually contribute to the "signal® observed by the
radar operator; (2) what is the signal-to-noise ratio resulting fram

1 1f this is not a familiar concept, an excellent discussion of it may
be found in Volume I of the M.I.T. Radiation Iaboratory Series, *Radar
System Engineering," pp L1-7, Section 2.11 ("Bffect of Storage on Radar
Performance®).
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this integration of many pulses of different amplitudes, and what "rectan-

gular®-shaped beamwidth would give this same signal-to-noise ratio after

integration? . If these questions were answered, it would then be possible,

for minimum-detectable-signal and maximum-range computations, to take as
the equivalent number of full-amplitude pulses integrated, n, the number
occurring in this equivalent rectangular beamwidth.

SUMMARY OF RESULTS

~ On the basis of some reasanable assumptions concerning the nature
of the integration process, it has been found possible to deduce such
an equivalence. The result obtained is that the equivalent rectangular
beamwidth is 0.473 times the' half-power width of a Gaussian-shaped
beam. Hence the equivalent number of full-amplitude pulses integrated
is 0.473 times the number usually assumed. On the basis that minimum
detectable signal power varies inversely as the square root of the
mmber of pulses integrated, the system sensitivity computed on this
new basis campared with the former as ion (as to mimber of pulses
integrated) is smaller by the factor {.473 = 0.69 (equivalent power
ratio). This is about 1.6 db. Thus a ®correction® for this effect
may be applied to computations of system sensitivity already made on
the previous basis (a 1.6 db correction).

The answer obtained to the first of the two questions ~-- namely,
how far out fram the beam center can the integration process be carried
profitably — is 0.8} times the distance out to the half-power point.
What this means is that integration out to this point gives an im-

‘provement in signal-to-noise ratio greater than the improvement ob-

tained by integrating over lesser or greater portions of the beam.
There is, in other words, an optimum "integration angle.® The ex-
planation of this phenomenon in general terms is that in any inte-
gration process the noise as well as the signal is being integrated,
and the process is profitable only so long l! it favors ths build-up
of signal compared to the build-up of noise.“ Inasmuch as the signal
amplitude is getting smaller and smaller with angular distance from
the beam center, while the noise is remaining constant in amplitude,
it is easy to see why the integration process should not be carried
too far. On the other hand, it is probably also obwvious that, near
the beam center where the slope of signal amplitude vs angle is small,
integration will be beneficial. Obviously then there is somewhere an
optimum stopping point, which ocur analysis has shown to be .8LL of the
distance from the beam center to the half-power point.

*

2 por explamation of why the two build up differently so as to favor the
signal 'ho]: the pulses are of comstant amplitude see the reference of
footnote |
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In going from this result to an “equivalent rectangular beamwidth®
it is of course assumed that the observer samehow has the ability to
integrate only over this optimum angle. Possibly this is not too
rash an assumption. One can at least imagine than an observer auto-
matically varies his "observation angle* over a reasonable range, in
an attempt to detect signals, and that this range would include the .
optimum angle. At any rate, it is ngvessary to make the assumption |
in order to make a mathematical analysis. Moreover, the result obtained :
is, if not correct, on the optimistic side, meaning that the correction
factor may be greater than 1.6 db, but not less (insofar as this particular
possible source of error is concerned).

SRR

MATHEMATICAL FORMUIATION AND SOIUTION OF THE PROBIEM
The one-way antenna voltage gain pattern for an assumed Geussian”

beam shape is:
G,(e) = e_'wmé) ‘

(1)

: where © is angle measured with respect to the beam center, 0, is the
coordinate of the half-power (.707 voltage) point, and the gain is |
normalized to unity at mid-beam. (The "half-power beamwidth* is 26,).

For 2-way (radar) propagation this becames

-i14(%)*
(2) G‘(G)S G‘zle) . e "4(/Q)

The integration process we are concerned with occurs after de-
tection (demodulation). Since we are concerned with small signals
in any discussion of minimum levels of discernibility, the effect
of the detector on low-signal levels must be taken into account. 1
This is approximately a square-law effect (even for a so-called
linear detector), and so the law of variation of signals as a function
of position in the beam, as finally observed in the receiver output,

] : - 2 .
r (3) G:(0) = G, (6) - e ik

L The effect of the intefration process is analyzed in terms of
; its effect on signal-to-noise ratio. After detection (demodulation),

. The representation of antenna beam shape by the Gaussian function
is based on empiricsl studies of practical antenna beams. This representa-
tion is typically valid over at least the range of beam arc of interest
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the measure of signal-to-noise voltage ratio may be taken to be3 ;
E., -E

S+ N

(k) R = =
Ty '

where E s¢n 1s the average value of signal-plus-noise, !. is the
average value of the noise in the absence of a signal, and Oy is the
root-mean-square deviation from the mean (standard deviationS‘ of _the
fluctuations of noise. In this expression we may call (E",,_ E,
the "signal.®

By an integration process it is meant that the effect of successive
signals (and noise) is additive. It is a well known theorem of mathe-
matical probability theory that the average value of the sum of n random
variables is equal to the sum of the average values. Hence for the
integration of n pulses all having the same average value the numerator
of (4) is multiplied by n. On the other hand, the standard deviation
of the sum of n random variables is equal to the square root of the
sum of the squares of the individual standard deviations. Hence for
the integration of n noise voltages the denaminator of (L) is increased
by the square root of n. This leads to the well-known result that R is
i increased by the square root of n; this is the improvement in video
‘ signal-to-noise voltage ratio obtained by video integration of n pulses
all having the same average value. Because of the square-law relation
between small values of pre-detection and post-detection signal-to-noise
ratios, the equivalent pre-detection improvement factor is n . This
refers to voltage signal-to-noise ratio. The equivalen e-detection
signal-to-noise power ratio improvement is therefore n o This is the
form in which experimental work confirming this result has usually been
expressed.

RS

When the integrated pulses are var in litude in accordance |
l with the beam pattern, the #signal* S= E, , - E, is a variable, |
‘ : following the law of equation (3). (It is the quantity S which varies
, as the square of the pre-detsction signal level, for signals of the
order of the noise or smaller.) That is,

S(6) = S(0) & 3%

3 this concept of post-detection signal-to-noise ratio was proposed by 1
the writer in an appendix to NRL report R-3123, and subsequently also
in a book, "Threshold Signals,® by Lawson and Uhlenbeck (McGraw-Hill, :
1950; pp. 161-163).
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Designating S(0) as Sy, and assuming a high #*density" of pulses,

the result of integrating frcm an angle -82 to 402 is:
-/-»7( %, )"
f d6

R

(6) : [ k 0w 46 ]
e Vz—k— f /.317(%,)
= 5

where R S,& Here k is the pulse density, in pulses per unit
angls. That is, if the pulse rate is ¥ and the scanning speed W ,

k = F/w. The number of pulses integrated in the interval -8, to +9;
is of’ course 2k0y.

(The assumption of high pulse density is necessary to justify
the use of an integral representation of the sum. In Appendix A, however,
it is shown that this representation also gives valid results for low-
pulse-density cases. It represents, for such cases, the statistical
average result, which is in fact the only generally meaningful and useful
result that could be obtained.)

Therefore the improvement relative to the mid-beam single-pulse
signal-to-noise ratio is

o Py
a5 e %o . Vé—f—f e-/.m(%,)da

The object of this analysis is to discover, if possible, the value
of @, which results in a maximum value of A. Mathematically this
corresponds to the condition

(8)
d6:

Physical reasonid} indicates that if a solution to (8) exists it
will correspond to a maximum value of 4, and not a minimum, and that
there will be only one maximum.

Fram (7) we get

| = :
dA _(@E _-mC%) f &%
© 4818 € - g |/z: 5 |
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and setting the right side equal to zero gives -
-4357(86,)* 0r _ 17(®
26, e - f e t1(%%,) de

It will be noted that the k has now dropped out, indicating
that the value of 0 giving maximum A does not depend on k, although
the assumption that k©; is large still applies.

(10)

The integral on the right is of the farm of the well kmown ervor
function which is tabulated, and hence a graphical solution to (10)
may be obtained. This yields

(11) 6, = 0.944 ¢

as the optimum value.

The next step is to calculate the fequivalent rectangular beam-
width.® TFor a rectangular beam, of width2@, the integration im-
provement factor would beuk} (the number Of pulses integrated
would be 2k «) We therefore write (from (7))

6z - o/ \2 v
(12) l/2k¢ = V%I_:_ f & /.3?7(/0/) 49—

Putting in the value @5 = 0.848; and solving for Q gives
Z@ - 0.)473(29 s the equivalent rectangular beamwidth. This repre-
sents a reduction of radar sensitivity of 1.6 db compared to the .
assumption of a rectangular beam of width 26, .

FURTHER ANALYSIS OF LOW-PUISE-DENSITY CASE

As has been pointed out, the foregoing results apply statistically
to low-pulse~density as well as high~pulse-density cases. When the
analysis was first made, it was suspected that this was the case, but
the rigorcus proof of the fact, given in Appendix 4, was not made until
later. Therefore a detailed analysis of the low-pulse-density case was
attempted. The results obtained may be of interest because they indi-
cate what may be expected during any one scan of a low-pulse-density
radar.

For low pulse densities it is necessary to use summations. More-
over, it is necessary to assume same particular positioning of the
pulses within the beam. Actually all possible positions will occur.
Two possible ones which are symmetrical were assumed, as indicated
in the following diagrams:
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e —> 0 e —
That is, in Case 1, one of the pulses is assumed to fall at the

exact beam center, If the angular spaclng of the pulses is ¢ s then

the other pulses fall at ©s%Y #2 ,1‘3 .. etc. In Case 2, there

is no pulse at the center bu " the pulses are symmtrically ositioned

with respect to the center -- that is, they fall at 8= ¢/ * 5%

t5¢/z_...:.....etc. : 2

The expressions corresponding to (7) for these two cases are
Case 1. -

%) ... met
(13a) s /+Z%—Te/-397(a)

i

Case 2,
n ' o 2
/e 1507 [Bps2f ]
2 Z e !
() Ay = m=1 .

B

where n is the number of pulses integrated.

Expressions of this kind cannot be differentiated with respect
to n unless the summations can somehow be put into closed form.
This does not appear to be directly possible, in tems of any known
functions. However, it is possible if the Gaussian function is
approximated, over the range of values of interest, by a second
degree parabola. This requires a suitable choice of the coefficients

gy aps 43t
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Choosing these coefficients by the method of lsast squaresl gives

ay = ~'.5h
a% - -028
ﬂ.3 =1

A comparison of this approximation with the actual function is
shown in the curves of Figure 1.

Substituting this approximation in (13a) gives

: G (%) A
(15) Ag(n)a-n-é 1+2m2__1 _2('—2—9?-4)Zm il %)Z’"

=4 ms=| T

The first two of these summations are readily evaluated, as
follows:

"
I\

=
(16) 2 4 r-

4
m=1
(! i
(w7 O Z m = i Joe 4 (arithmetical progression) ‘
m= 2

L -1.387x° .
This was done by expanding e in the first three terms of a series
of legendre polynomials, which can be shown to give a result satisfying the
#]east squares® criterion. I am indebted to Mr. L.G. McCracken for suggesting
this method. The value a3 = 1 may seem somewhat improbable as a least-square-
fit value. It was obtained by slide-rule computation and is therefore not
exact, but a more accurate computation was deemed unnecessary because of the
good recsults obtained with these values of the coefficients.
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The_ third summation can be §10un5 to be

(%) 2
2 72(71 -/)
(18) m =
ms/l 2.4

Thus (15) can be expressed in completely closed form, giving,
for Case 1:

1) Au(n)= ﬂ-'A [-.04-5%)7% 3-.07(—3-:—)nz+ {1 +.o+5(g){n +.o7%

Differentiating this with respect to n and setting the result
equal to zero gives

(20) ‘n3+0-‘755'(%—> [444( )4 0.2 |n rosi(e =0

A similar process applied to (13b) gives for Case 2:

(21) Az(“) n - f °45(£)" "°7(0 )"‘z*“ {”"45(% (J

and as the relation for maximum Rzz

(2) n +o‘f35 [4 44(4,)4-02]

Y

5 This result was given to me by Mr. W.S. Alderson, who obtained it
by application of a generating-function technique to a difference
equation. The general form of his result is g ma.’ N(N+1X2 Nf 1)
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By multiplying (20) through by n~! a striking similarity to (22)
is observed, which indicates that the optimum value of n for the two
cases is different only when the optimum value is small -- i.e., when
the pulse density is quite low.

Equations (19) through (22) were applied to a particular case
representing typical radar operation at low pulse density. The
values assumed were: scanning speed w) 200 degrees/second, beam-
width (267 =48 ) 3 degrees, and pulse rate (F) 300 per second. Hence,

/8 = = O.Llh. (These figures are reasonable practical values

but so far as is known they do not represent any actual radar system.s
For Case 1 the optimum value found was n = 3.8, and for Case 2, n = 3.83.
(For Case 1 the solution of the cubic equation (20) was obtained
graphically, and only two significant figures were considered justified.
For Case 2 equation (22) is of course quadratic and the solution
was found to three significant figures. The two results are obviously
very nearly the same,)

In Case 1, the actual number of pulses must be an odd integer,
and thus would be either n = 3 or n =« 5. To determine which of these
values to take, Al was calculated, from (19), as follows:

n 3 3.8 5
Al(n) 1.h7 1050 1-’43
Thus n = 3 is the best value.

For Case 2 the number must be an even integer, which would
obviously be n = L. Substituting this value in (21) gives Ap = 1.L9.
The consistency of all these results seems very good.

The expressions (19) through (22) cbtained for low pulse density
are in no way restricted to low-density cases, although (1l) may give
a more accurate result in high-pulse-density cases because of the
approximation (14) used in obtaining equations (19) through (22).
When high pulse density is assumed, for equations (20) and (22) it
is apparent that n>»1, {/6,<<1, and "P/6, is of the order of 1.
Applying these relations to ll>oth (20) and (}2) s0 as to discard terms
involving nP(@)/6;)d where q > p, both equations reduce to a fom
involving the variable u = n@.

1

(23) u2+ 0.935u = Lk « 0
for which the solution is u = 1.698

10




In the symbols of equations (6) through (12) this means:
(2) 9, = 0.8L98, :
Comparing this with (11) it is seen that the two results are in very

good agreement. This indicates that the approximation (14) is a good
one.
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APFENDIX A

This Apperidix is a proof that the integral solution of the problem

is valid not only for a dense-pulse case but also for low-pulse-density
cases. This proof was worked out by Mr. W. S. Alderson,

Suppose that the total angular interval from - @» to +@» contains
(n + 1) pulses separated by angular intervals of widtgAO. Within the
range - 85 to + @y the set of n pulses may take an infinite number of
positionings (that is, any one of the pulses may have a position any-
where within the interval A@). On any one scan of the radar a particu-
lar positioning will occur, and a icular value of R will be ob-
served (see equations L, 6, and 13). Far purposes of computing radar

sensitivity ar maximum range, the average value of R over a great many
observations (or scans) is required.

On any single scan, let the pulses occurring in the interval - @5 to
+ Oy be numbered from -n/2 to +n 2. Let the angular position of the
pulse be &, Using notation siuilar to that of equation 6, the mplitude
of the jth®signal pulse after detection may be denoted as S(%3). Then

the integrated signal-to-noise ratio after detection, as given for a low-
pulse-density case by equation 13, will be

"
R = .Zy S(“J‘)

="

\n+i o

where 0 is the rms noise voltage.

This result holds for any particular positioning of the pulses.
The average over all possible positionings may be written

| %
R = 2 S(=)
h d
Ynel 0 jo-mp
If one interval A® sub-divided into N equally spaced sub-

intervals, so that the m'? sub-interval of the j'h interval is
located at angular position ¢3., we may write

A L N M
S S;) = Lomit _'..Z S
J=-% J : ”'"'Num;%

12
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Q 3
Hence A—Lé f S (e ) d o
Wt T

Here '/Ae corresponds to the "pulse density,” k, in equation 6,
Similarly the quantity (n4*1) can be re-written as (2 k ©2), giving

6
—R- = k [LS(G) o
N2k, T

which is seen to be essentially equation 6. Thus it has been demon-
strated that this equation applies to low-pulse-density cases, in a
statistical average sense, as well as to high-pulse-density cases.

This proposition has been proved rigorously here only for the
case where 20, = (n+ 1)AO. It is also true for *integration angles®
that are not fntogral mltiples of 4@, but it was felt that the ad-
ditional proof would not be of sufficient value to the reader to Justify
its inclusion. :




